Sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Westfield Public Works is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline at (800) 426-4791.

SOURCE WATER ASSESSMENT AND WELLHEAD PROTECTION

A Source Water Assessment has been completed for your community. The source of Westfield’s drinking water is groundwater produced from three wellfields located within the Westfield community. Specifically, your drinking water source is either the New Castle Till Plains and Drainageways Region or the Tipton Till Plain Region. The New Castle Till Plain wells have moderate and low contamination susceptibility ratings due to a thick clay layer. Wells within the Tipton Till Plain are reported to be highly susceptible to contamination due to the sandy soils in the region and a thin clay layer.

To help protect you and our water supply wells, the Westfield Public Works has implemented a Wellhead Protection Plan that focuses on protecting the groundwater sources, public awareness and education, and spill prevention and reporting. For more information on your Source Water Assessment and Wellhead Protection Plan, please contact the Westfield Public Works.

PROTECT OUR DRINKING WATER SUPPLY AND OUR WATERSHED

- Reduce the amount of fertilizers, pesticides, or other hazardous chemicals that you use. Buy only what you need so that you don’t have to dispose of leftovers. Read all the labels and follow directions.
- Use organic lawn and garden alternatives that do not contain synthetic chemical poisons. Reduce the use of products that contain any of the following words on their labels: caution, warning, danger, poison, flammable, volatile, caustic, or corrosive.
- Recycle used oil, automotive fluids, batteries, and other products. Don’t dispose of hazardous products in toilets, storm drains, wastewater systems, creeks, alleys, or the ground. This pollutes the water supply.
- Residents can utilize the Hamilton County Household Hazardous Waste Center at 1717 E. Pleasant Street, Suite 200 in Noblesville. For more information, visit www.hamiltoncounty.in.gov/ and click on household hazardous waste in the department directory or call (317) 776-4005.

For more information, visit www.hamiltoncounty.in.gov/ and click on household hazardous waste in the department directory or call (317) 776-4005.

Prepared by
Wessler Engineering
Indianapolis, Indiana
DEFINITIONS

Action Level (AL) - The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Below the Detection Limit (BDL) - Constituent not detected in the sample.

Grains per Gallon (GPG) - Grains per gallon refers to the hardness of water. Very hard water has more than ten grains per gallon, and very soft water has less than one grain per gallon.

Maximum Contaminant Level (MCL) - The “Maximum Allowed” (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. To understand the possible health effects described for many regulated constituents, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

Maximum Contaminant Level Goal (MCLG) - The “Goal” (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level Goal - The “Goal” (MRDLG) is the level of drinking water disinfectant below which there is no known or expected risk to health. Not Applicable (N/A) - No MCLG or MCL has been established for these unregulated constituents.

Parts per billion (PPB) - One part per billion corresponds to one minute in two thousand years or a single penny in $10,000,000.

Parts per million (PPM) - One part per million corresponds to one minute in two years or a single penny in $10,000.

Hardness of Water 2010 No 24 14 to 24 (3) GPG N/A N/A Naturally occurring in water; Usually comprised of calcium and magnesium.

Disinfection Byproducts and Precursors

<table>
<thead>
<tr>
<th>Name of Substance</th>
<th>Date Sampled</th>
<th>Violation</th>
<th>Maximum Level Detected</th>
<th>Range of Levels Detected</th>
<th>Unit Measurement</th>
<th>MCLG</th>
<th>MCL</th>
<th>Likely Source of Substance in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromodichloromethane</td>
<td>12/19/2008</td>
<td>No</td>
<td>2.22</td>
<td>BDL to 2.22</td>
<td>PPM</td>
<td>N/A</td>
<td>N/A</td>
<td>By-product of drinking water chlorination.</td>
</tr>
<tr>
<td>Chlorine Residual</td>
<td>2010</td>
<td>No</td>
<td>1.1</td>
<td>0.2 to 1.1</td>
<td>PPM</td>
<td>MRDL =4</td>
<td>MRDL =4</td>
<td>Water additive used to control microbes.</td>
</tr>
<tr>
<td>Chlorodibromomethane</td>
<td>12/19/2008</td>
<td>No</td>
<td>2.97</td>
<td>BDL to 2.97</td>
<td>PPM</td>
<td>N/A</td>
<td>N/A</td>
<td>By-product of drinking water chlorination.</td>
</tr>
<tr>
<td>HAAs (Haloacetic acids)</td>
<td>2010</td>
<td>No</td>
<td>13.9 (2)</td>
<td>7.0 to 53.9</td>
<td>PPM</td>
<td>0</td>
<td>60</td>
<td>By-product of drinking water chlorination.</td>
</tr>
<tr>
<td>Total TTHMs (Trihalomethanes)</td>
<td>2010</td>
<td>No</td>
<td>26.7 (2)</td>
<td>10.0 to 74.5</td>
<td>PPM</td>
<td>0</td>
<td>80</td>
<td>By-product of drinking water chlorination.</td>
</tr>
</tbody>
</table>

Table Notes

1 - Levels detected for copper and lead represent the 90th percentile value, as calculated from 30 samples. Note that two of the 30 samples for lead exceeded the Action Level. This is not a water quality violation. The 90th percentile value for lead is below the MCL.

2 - The maximum levels detected for TTHMs and HAAs represent the running annual averages based on quarterly samples.

3 - The hardness range is representative of the average measurements at the River Road, Cherry Tree, North, and Greyhound Pass Plants.

The state allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Therefore some of our data, while representative, is more than one year old.